- J. Schumann, H. Näsström, M. Götte, L. Himanen, A. Moshantaf, M. Scheidgen, J. A. Márquez Prieto, C. Draxl, and A. Trunschke
Towards a new era for open and FAIR data in catalysis research – A catalysis plugin for NOMAD
Chem Rxiv , (2025). [DOI] - A. Maqsood, H. Näsström, C. Chen, L. Qiutong, J. Luo, R. Chakraborty, V. Blum, E. Unger, C. Draxl, J. A. Márquez, and T. Jesper Jacobsson
Towards an interoperable perovskite description or how to keep track of 300 perovskite ions
Nat Commun 16, 8725 (2025). [DOI] - M. Jalali, A. D. Wonanke, P. Friederich, and C. Wöll
The Black Hole Strategy: Gravity-Based Representative Sampling for Frugal Graph Learning on Metal-Organic Framework Networks
J. Chem. Inf. Model. , (2025). [DOI] - N. Alampara, M. Schilling-Wilhelmi, M. Ríos-Garciía, I. Mandal, P. Khetarpal, H. S. Grover, N. M. Anoop Krishnan, and K. M. Jablonka
Probing the limitations of multimodal language models for chemistry and materials research
Nat Comput Sci 36, (2025). [DOI] - A. Mirza, N. Alampara, S. Kunchapu, M. Ríos-García, B. Emoekabu, A. Krishnan, T. Gupta, M. Schilling-Wilhelmi, M. Okereke, A. Aneesh, M. Asgari, J. Eberhardt, A. M. Elahi, H. M. Elbeheiry, M. V. Gil, C. Glaubitz, M. Greiner, C. T. Holick, T. Hoffmann, A. Ibrahim, L. C. Klepsch, Y. Köster, A. Kreth, J. Meyer, S. Miret, J. M. Peschel, M. Ringleb, N. C. Roesner, J. Schreiber, U. S. Schubert, L. M. Stafast, D. Wonanke, M. Pieler, P. Schwaller, K. M. Jablonka
A framework for evaluating the chemical knowledge and reasoning abilities of large language models against the expertise of chemists
Nat. Chem 17, 1027 (2025). [DOI] - M. Schilling-Wilhelmi, M. Ríos-García, S. Shabih, M. V. Gil, S. Miret, C. T. Koch, J. A. Márquez, and K. M. Jablonka
From text to insight: large language models for chemical data extraction
Chem. Soc. Rev. 54, 1125 (2025). [DOI] [arXiv] - T. Denell, L. Himanen, M. Scheidgen, and C. Draxl
Automated identification of bulk structures, two-dimensional materials, and interfaces using symmetry-based clustering
npj Comput Mater 11, 25 (2025). [DOI] - A. D. Fuchs, J. A. F. Lehmeyer, H. Junkes, H. B. Weber, and M. Krieger
NOMAD CAMELS: Configurable Application for Measurements, Experiments and Laboratory Systems
J. Open Source Softw. 9, 6371 (2024). [DOI] - M. Baldovin, A. Browaeys, J.M. De Teresa, C. Draxl, F. Druon, F. Fradenigo, J.-J. Freffet, F. Lépine, J. Lüning, L. Reining, P. Salières, P. Seneor, L. Silva, T. Tschentscher, K. van Der Beek, A. Vollmer, and A. Vulpiani
Matter and Waves
Chapter 3 in EPS Grand Challenges - Physics for Society in the Horizon 2050, Ed. C. Hidalgo
IOP Publishing , (2024). [DOI] - M. Kuban, S. Rigamonti, and C. Draxl
MADAS: A Python framework for assessing similarity in materials-science data
Digit. Discov. 3, 2448 (2024). [DOI] [arXiv] - M. L. Evans, J. Bergsma, A. Merkys, C. W. Andersen, O. B. Andersson, D. Beltrán, E. Blokhin, T. M. Boland, R. Castañeda Balderas, K. Choudhary, A. Díaz, R. Domínguez García, H. Eckert, K. Eimre, M. E. Fuentes Montero, A. M. Krajewski, J. Jørgen Mortensen, J. M. Nápoles Duarte, J. Pietryga, J. Qi, F. de Jesús Trejo Carrillo, A. Vaitkus, J. Yu, A. Zettel, P. B. de Castro, J. Carlsson, T. F. T. Cerqueira, S. Divilov, H. Hajiyani, F. Hanke, K. Jose, C. Oses, J. Riebesell, J. Schmidt, D. Winston, C. Xie, X. Yang, S. Bonella, S. Botti, S. Curtarolo, C. Draxl, L. E. Fuentes Cobas, A. Hospital, Z. Liu, M. A. L. Marques, N. Marzari, A. J. Morris, S. Ping Ong, M. Orozco, K. A. Persson, K. S. Thygesen, C. Wolverton, M. Scheidgen, C. Toher, G. J. Conduit, G. Pizzi, S. Gražulis, G. Rignanese, and R. Armiento
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange
Digit. Discov. 3, 1509 (2024). [DOI] - A. Moshantaf, M. Wesemann, S. Beinlich, H. Junkes, J. Schumann, B. Alkan, P. Kube, C. P. Marshall, N. Pfister, and A. Trunschke
Advancing catalysis research through FAIR data principles implemented in a local data infrastructure – a case study of an automated test reactor
Catal. Sci. Technol. 14, 6186 (2024). [DOI] - L. M. Ghiringhelli, L. Sbailò, Á. Fekete, M. Scheidgen, and M. Scheffler
Choosing AI analysis tools and enacting their reproducibility: the NOMAD AI toolkit
Section 3.4 in S. Bauer et al.
Roadmap on Data-Centric Materials Science
Modelling Simul. Mater. Sci. Eng. 32, 063301 (2024). [DOI] - Y. Zimmermann et al.
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
preprint , (2024). [arXiv] - T. Bereau, L. J. Walter, and J. F. Rudzinski
Martignac: Computational Workflows for Reproducible, Traceable, and Composable Coarse-Grained Martini Simulations
J. Chem. Inf. Model. 64, 9413 (2024). [DOI] [arXiv] - L.M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C. Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S. Dwaraknath, Á. Fekete, J. Kermode, C.T. Koch, M. Kühbach, A.N. Ladines, P. Lambrix, M.O. Lenz-Himmer, S. Levchenko, M. Oliveira, A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T. Sheveleva, C. Su, D. Usvyat, O. Valsson, C. Wöll, and M. Scheffler
Shared Metadata for Data-Centric Materials Science
Sci. Data 10, 626 (2023). [DOI] - Mehrdad Jalali, A.D. Dinga Wonanke, Christof Wöll
MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal–organic frameworks utilizing graph convolutional networks
J. Cheminform. 15, 94 (2023). [DOI] - M. Scheidgen, L. Himanen, A. N. Ladines, D. Sikter, M. Nakhaee, Á. Fekete, T. Chang, A. Golparvar, J. A. Márquez, S. Brockhauser, S. Brückner, L. M. Ghiringhelli, F. Dietrich, D. Lehmberg, T. Denell, A. Albino, H. Näsström, S. Shabih, F. Dobener, M. Kühbach, R. Mozumder, J. F. Rudzinski, N. Daelman, J. M. Pizarro, M. Kuban, C. Salazar, P. Ondračka, H.-J. Bungartz, and C. Draxl
NOMAD: A distributed web-based platform for managing materials science research data
J. Open Source Softw. 8, 5388 (2023). [DOI] - C. P. Marshall, J. Schumann, and A. Trunschke
Achieving Digital Catalysis: Strategies for Data Acquisition, Storage and Use
Angew. Chem. Int. Ed 62, e202302971 (2023). [DOI] - M. Kuban, Š. Gabaj, W. Aggoune, C. Vona, S. Rigamonti, and C. Draxl
Similarity of materials and data‑quality assessment by fingerprinting
MRS Bulletin Impact section
MRS Bulletin 47, 991 (2022). [DOI] [arXiv] - C. Draxl, M. Kuban, S. Rigamonti, and M. Scheidgen
Challenges and perspectives for interoperability and reuse of heterogenous data collections
Section 4.1 in H. J. Kulik, et al.
Electronic Structure 4, 023004 (2022). [DOI]
Roadmap on Machine Learning in Electronic Structure - M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl
Density-of-states similarity descriptor for unsupervised learning from materials data
Sci. Data 9, 646 (2022). [DOI] [arXiv] - M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H.-J. Bungartz, C.Felser, M. Greiner, A. Groß, C. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Wöll, and C. Draxl
FAIR data enabling new horizons for materials research
Nature 604, 635 (2022). [DOI] [arXiv] - A. M. Teale, T. Helgaker, A. Savin, C. Adamo, B. Aradi, A. V. Arbuznikov, P. W. Ayers, E. J. Baerends, V. Barone, P. Calaminici, E. Cancès, E. A. Carter, P. K. Chattaraj, H. Chermette, I. Ciofini, T. D. Crawford, F. De Proft, J. F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P. M. W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H. J. A.Jensen, E. R. Johnson, R. O. Jones, M. Kaupp, A. M. Köster, L. Kronik, A. I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N. T. Maitra, F. Neese, J. P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D. R. Salahub, M. Scheffler, P. Schwerdtfeger, V. N. Staroverov, J. Sun, E. Tellgren, D. J. Tozer, S. B. Trickey, C. A. Ullrich, A. Vela, G. Vignale, T. A. Wesolowski, and X. W. Yang
DFT Exchange: Sharing Perspectives on the Workhorse of Quantum Chemistry and Materials Science
Phys. Chem. Chem. Phys. 47, 28700 (2022). [DOI] [arXiv] - Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo, S. Wuttke, P. Friederich, and M. Tsotsalas
MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
Angew. Chem. Int. Ed. 61, e202200242 (2022). [DOI] - M. Jalali, M. Tsotsalas, and C. Wöll
MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis
Nanomaterials 12, 704 (2022). [DOI] - M. Krieger, H. B. Weber, and C. van Eldik
Früh zur Datenkompetenz
Phys. J. 21, 42 (2022). - A. Trunschke
Prospects and Challenges for Autonomous Catalyst Discovery Viewed from an Experimental Perspective
Catal. Sci. Technol. 12, 3650 (2022). [DOI]
